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Abstract

Existing approaches to the multi-armed ban-
dit (MAB) primarily rely on perfect recall of
past actions to generate estimates for arm pay-
off probabilities; it is further assumed that
the decision maker knows whether arm pay-
off probabilities can change. To capture the
computational limitations many decision mak-
ing systems face, we explore performance un-
der bounded resources in the form of imperfect
recall of past information. We present a finite
memory automaton (FMA) designed to solve
static and dynamic MAB problems. The FMA
demonstrates that an agent can learn a low
regret strategy without knowing whether arm
payoff probabilities are static or dynamic and
without having perfect recall of past actions.
Roughly speaking, the automaton works by
maintaining a relative ranking of arms based
on payoff probabilities rather than estimating
precise payoff probabilities.

1 Introduction
In the classic multi-armed bandit (MAB) problem, an
agent is faced with a repeated decision of selecting an arm
to pull from a set of arms, each with an unknown payoff
structure. The agent can only observe the outcome of an
individual arm pull and will receive a payoff for that out-
come. The agent’s goal is to determine, over time, a good
arm selection strategy. A strategy can be evaluated by var-
ious metrics such as the rate of learning for the strategy,
convergence to an optimal strategy, or cumulative payoff
[2].

The MAB problem highlights the exploration versus ex-
ploitation dilemma found in reinforcement learning. In a
good arm selection strategy, the agent will allocate suffi-
cient resources for exploring the various arms to get an es-
timate of which arm is the best, before exploiting that arm.
Having a reasonable exploration period protects the agent
from prematurely committing to the wrong arm based on
incorrect beliefs; learning quickly allows the agent to play
the best arm for a larger proportion of the time.

Since its first formulation, the bandit problem has seen
many permutations to reflect specific applications. To cap-
ture the computational limitations many decision making
systems face, we explore performance under bounded re-
sources in the form of imperfect recall of past informa-
tion. In this paper, we present a finite memory automa-
ton (FMA) designed to solve MAB problems in both static

scenarios where the arm payoff probabilities remain con-
stant and dynamic scenarios where arm payoff probabil-
ities can change. In these environments, the FMA can
match high performing perfect recall algorithms, even in
decision problems with well over ten thousand stages.

2 The Multi-Armed Bandit Problem
The MAB problem is inspired by the situation a gambler is
faced with when selecting amongst a set of slot machines
to play. Each slot machine has an associated probability
distribution for rewards that is unknown to the gambler.
The gambler can only pull one slot machine arm at a time,
but can choose from any of the slot machines. The gambler
receives a reward from each arm pull and can use that re-
sult to inform future slot machine selections. Overall, the
gambler wishes to maximize the rewards received for the
duration of game play [2].

As a generalization of the gambler’s situation, MAB
problems model an agent who must reason about a set of
arms, each with an unknown payoff structure. For sim-
plicity, we restrict our analysis of the FMA’s performance
to the class of two-armed Bernoulli bandit (TABB) prob-
lems. In a TABB problem, there are exactly two bandit
arms for the agent to select between. The payoff proba-
bilities for each arm follow Bernoulli distributions, which
give a payoff of 1 with a probability p and a payoff of 0
with a probability 1 − p. We represent the decision prob-
lem as a tuple D = (θ1, θ2) where θ1 and θ2 represent the
probability distributions associated with playing arm 1 and
arm 2 respectively. We call each decision point where the
agent must select an arm to play a stage; the decision prob-
lem is built from a sequence of such stages and we call the
full sequence a horizon. The length of a horizon may be
characterized in a number of ways:
• known infinite horizon: the agent knows a priori

that they will be playing an infinite number of stages.
• known finite horizon: the agent knows a priori the

length of the full horizon (with length lh ∈ N).
• unknown (finite) horizon: the horizon is finite

(with probability 1), but the agent is uncertain of
the exact length. Each stage is considered to have
a probability η of being the final stage.

In TABB problems, the true payoff probabilities asso-
ciated with each arm can remain constant or change over
time. The agent may or may not know the behavior of
payoff probabilities in the decision problem. It is useful
to distinguish three potential behaviors of payoff probabil-
ities over time:
• static TABB: the arm payoff probabilities are fixed

at the start and do not change over time.



• dynamic TABB with small incremental changes:
the arm payoff probabilities are dynamic; all changes
to the payoff probabilities are randomized, small in-
cremental changes and typically occur after every
stage. This class of TABB captures environments
with constantly drifting payoff probabilities. An ex-
ample process that follows this behavior is Brownian
motion.

• dynamic TABB with unbounded changes: the
arm payoff probabilities are dynamic; changes to the
payoff probabilities can be of random, unbounded
magnitude and typically occur with low frequency.
We use this class of TABB to reason about environ-
ments where payoff probabilities are subject to punc-
tuated and infrequent changes.

We index dynamic decision problems with a time vari-
able t, as in Dt, to represent the arm payoff probabili-
ties at stage t. The output of playing any arm is a signal
s ∈ {0, 1} where we interpret s = 0 as is a poor payoff
and s = 1 as is a good payoff.

A strategy dictates how the agent selects an arm to play
at each stage. Evaluation of a strategy may take a number
of factors into consideration. For instance, convergence of
an arm selection policy to the optimal arm selection strat-
egy is a property often expected in infinite horizon MAB
problems. In contrast, cumulative payoff may be more
appropriate in finite horizon MAB problems. Other met-
rics such as regret compare the arm selection strategy em-
ployed against an optimal strategy at every stage played.
In this case, we usually define the optimal strategy as one
where the arm with the highest payoff probability is always
selected.

3 Applications
Static MAB [1] [3] [4] and dynamic MAB with small in-
cremental changes in payoff probabilities [5] have been
studied in previous literature. We present an example of a
static MAB problem from web design evaluation as well as
an example of a dynamic MAB problem with small incre-
mental changes from distribution logistics. We also moti-
vate dynamic MAB with unbounded changes by providing
an example in forward proxy server selection. This class
of dynamic MAB captures a fundamentally different type
of change to the decision problem which is not afforded
by dynamic MAB with small incremental changes. These
three applications highlight static and dynamic properties
of MAB in isolation but we also suggest how a commbi-
nation of properties can be used to model more realistic
decision problems.

3.1 Web Design Evaluation
Web browsing behavior has been shown to vary based on
the structure in which content is presented; web designers
are interested in comparing user behavior in response to
different web page designs. For instance, an e-commerce
company would like to design a search results page opti-
mal for encouraging viewers to click on the products. The
evaluation metric here is click-through-rate, which repre-
sents the proportion of viewers who select on a product
link to the total number of viewers who come to the page;
a higher click-through-rate reflects a better page design.

In this setting, each distinct web page design in ques-
tion is associated with an unknown click-through-rate. As
an MAB problem, a web page design is a bandit arm where
the click-through-rate is the associated payoff probability.

When a user is presented with a web page, their click-
through behavior serves as an indicator for the design qual-
ity of that page. Navigating to the page and clicking on an
item is taken to be a good payoff while navigating to and
away from the page without clicking on any items is taken
to be a poor payoff. Thus, we can easily model the deci-
sion problem of identifying the web page design with the
best relative click-through-rate as a static MAB problem.

3.2 Distribution Logistics
Distribution logistics is concerned with the flow of goods
from a vendor to the customer. Imagine a vendor with a
single product that has a fixed cost of production and a
fixed sale price, but a dynamic cost of shipment. Take the
marginal profit the vendor receives to be the difference be-
tween the revenue from the sale and the costs of production
and shipment. A vendor’s goal is to maximize marginal
profit.

A shipment can take one of a set of fixed paths to reach
the final destination; the dynamic cost of shipment is de-
termined by the totality of shipping costs, which considers
the transportation method, route distance, shipping time,
and similar factors. Further, the effect of individual factors
on the final shipping expense can fluctuate during differ-
ent times of the day or different months of the year. For
example, any path that includes driving on a highway may
take more time during rush hour and be less desirable. In
contrast, all transportation methods would be costly dur-
ing a winter snow storm, but paved highways are safer to
drive on and thus more desirable. Overall, which ship-
ping route is optimal can change over time, as optimality
is contingent on conditions that change over time. While
the potential shipping costs can vary greatly from one set
of conditions to another, it is not likely that the totality of
conditions change drastically between shipments. Instead,
individual contributing factors may change and result in
small shifts in the the overall expense. Here, we see that a
dynamic MAB problem with small incremental changes in
arm payoff probabilities captures the task of path selection
where each potential path is an arm and the marginal profit
derived from the shipping expense is the payoff.

3.3 Forward Proxy Selection
A proxy server facilitates requests between a user and a
target server. A forward proxy serves as an intermediary
between any number of users and external resources such
as the Internet. Typically, the speed of service is inversely
proportional to the number of current users. For a given
request, a user can select from a set of forward proxies,
where the number of other users for that proxy is unknown.
As a MAB problem, we can represent each proxy as an arm
with the speed of service equivalent to expected payoff.

Typically, the traffic for a given proxy is fairly sta-
ble. However, it is conceivable for the load of a proxy
to undergo changes unannounced to users. For instance,
a server S may go down; the traffic previously directed
through S will be distributed across remaining proxies
with no guarantee of uniform distribution. Similarly, a
server may be upgraded and be able to handle a larger load
without a drop in speed. A third situation is where a differ-
ent user may select one of the proxies to run a large batch
job, tying up the selected proxy for some duration of time.
None of these cases are likely frequent occurrences, but in
the event of any, there could be a change in performance
of unbounded magnitude to one or more proxies. Further,
users are not necessarily aware of these external factors



and are given no prompt to abandon their previous beliefs
about the proxies, except from the observed performance.
This type of behavior is captured nicely in our presentation
of an unbounded dynamic MAB problem.

3.4 A Few Remarks
Web design evaluation, distribution logistics, and forward
proxy selection are just three examples of the applications
for multi-armed bandit problems, selected to showcase dif-
ferent features of MAB problems. Specifically, arms as
characterized by these domains tend to predominantly ex-
hibit one type of arm behavior. However, it is more con-
ceivable that they actually exhibit all three types of arm
behavior, to different extents. For instance, we can eas-
ily see how a larger change in the environment can effect
distribution logistics; if a water main breaks and results
in the closing of a road, the agent is in an environment
where both classes of dynamic MAB apply. Similarly, for
web design evaluation, the demographics of the target user
group may change over time and thus the optimal page de-
sign required to reach the new demographic will slowly
change in response. From these situations, we can see that
allowing a decision problem to take on more than one form
allows for more representative models. Conversely, an al-
gorithm which can perform well in multiple environments
without additional mechanisms or tuning would be able
to reason about more complex and realistic decision prob-
lems.

4 Related Work
A number of approaches have been explored for solving
bandit problems under computational constraints.

One of the most simple strategies is ε-greedy which uni-
formly balances exploration and exploitation. With a prob-
ability of ε, a random arm is selected in exploration across
the set of arms. With a probability of 1 − ε, the arm cur-
rently believed to have the highest payoff probability is se-
lected in exploitation. The beliefs of about an arm’s payoff
probability is contingent on the signals received from that
arm in the previous stages; the arm currently believed to
have the highest payoff probability is the one which his-
torically has given the highest average payoff. In its nor-
mal form, ε-greedy does not necessarily converge to the
optimal strategy. Variations of this strategy exist such as
ε-decreasing and ε-first to try and remedy this limitation
[8].

Another class of strategies is based on determining a
confidence interval around estimates of arm payoff proba-
bility, such as with an upper confidence bound (UCB) [1].
The agent maintains beliefs about the upper bound of the
payoff probability for every arm, selecting the arm with
highest upper bound at each round.

Similarly, Bayesian approaches track beliefs about the
true payoff probabilities. One such approach is the
Bayesian Learning Automaton (BLA) [3] [4] which main-
tains only a beta distribution for each arm to represent the
agent’s beliefs about the payoff probability of that arm.
The α and β parameters for each beta distribution are the
number of previously received signals, good and poor sig-
nals respectively, from the corresponding arm; these pa-
rameters are updated after each stage. Sampling from each
of the distributions is used to determine an the agent’s ac-
tion at a stage while simultaneously balancing exploration
and exploitation. The BLA was designed for the static
MAB problem and converges to the optimal strategy with
probability 1. Variations of the BLA have been developed

to cater to the class of dynamic problems where payoff
probabilities can undergo small incremental changes [5].

Across these approaches, there is a general interest in
determining the true payoff probabilities of the arms; ε-
greedy strategies sample all arms to get a rough estimate
of each arm, UCB estimates a range where the true payoff
probabilities are likely to lie within, and BLA uses a beta
distribution to estimate true payoff probabilities. How-
ever, the MAB is not fundamentally an estimation prob-
lem; the MAB is a ranking problem. An agent is best
rewarded when playing an arm with the highest expected
payoff probability. Naturally, one way to identify the arm
with the highest expected payoff probability is to form an
estimate of the payoff probabilities of all arms and select
the maximal arm. However, the agent’s payoff is not con-
tingent on the accuracy of these estimates; identifying the
best arm is the extent to which an agent is interested in
estimating the true payoff probabilities of all arms. The
FMA bypasses rigorous payoff probability estimation and
directly produces a relative ranking of the arms. The FMA
explicitly considers how different the payoff distribution
amongst the arms are, rather than just what the estimated
payoff probabilities are, to identify the arm with the high-
est expected payoff probability.

Further, most existing approaches to MAB problems
rely on the full history of received signals for perfect
Bayesian updating of beliefs about the arm payoff prob-
abilities. There have been a number of techniques using
finite automata [9] and Turing machines [6] [7] to repre-
sent a computationally limited agent for other problems
within game and decision theory. In these systems, mem-
ory is defined by the number of states in the automata and
represents the automata’s computational power. The finite
automata has been shown to perform well on a variant of
the one-armed bandit, where an agent must decide whether
an arm is ”good” or ”bad” given a sequence of signals.

The FMA borrows constructs for a bounded decision
making structure from automata theory while leveraging a
payoff probability tracking mechanism similar to that pre-
sented in the unbounded BLA. However, by implicitly en-
coding beliefs about the relative ranking of the bandit arms
within a finite state space, rather than a payoff probabil-
ity estimate for each arm like the BLA, the FMA is es-
sentially restricted to a finite set of possible beliefs. This
constraint prevents the FMA from updating belief on all
previous signals and captures the notion of a computation-
ally limited agent. Even still, the FMA’s ability to main-
tain rankings rather than point-estimates makes it a flexible
enough framework to perform well in static and dynamic
cases alike, without any modifications.

5 The Algorithm

We model a decision maker as a stochastic finite state au-
tomaton where each state encodes discrete beliefs about
the payoff probabilities of each arm in the decision prob-
lem. A transition between states is determined by the pre-
vious arm selected and its corresponding output signal.

The following subsections explain our decision maker
automaton as defined for the TABB problem. We present
the framework for the FMA in Section 5.1 and the full al-
gorithm in Section 5.2. Motivations for further constraints
on various components of the FMA are given in Sections
5.1 - 5.1, as one way to specify a high performing FMA.



5.1 Decision Maker
To limit the automaton to a finite state space, fix the con-
stant m ∈ N to denote the size of the automaton. m is in-
terpreted to be the granularity of beliefs a decision maker
can have about any given arm. For simplicity, we take m
to be uniform across all arms.

Take a state to be a tuple ω = (r1, r2) which encodes
the decision maker’s beliefs about the ranks of the two
arms. Each ri is constrained by 1 ≤ ri ≤ m and
represents the current rank of arm i. We interpret ri > rj
as the decision maker believing that arm i has a higher
payoff probability than arm j.

A decision maker for the TABB problem is a tuple
DM = (Ω, ω0, a, t) defined by the following conditions:

C1 Ω = {1, ...,m}2 is the state space;

C2 ω0 ∈ Ω is the starting state;

C3 a : ω → {1, 2} where a(ω) specifies which arm the
decision maker should play when at state ω;

C4 t : ω × {1, 2} × {0, 1} → ω where t(ω, i, d) deter-
mines the decision makers’ new state as updated by
the judgement of the last signal from arm i.

Ranking
In our DM, the ranking structure is bound by the granu-
larity constant m. At each state, every arm in the decision
problem has an associated rank which represents the de-
cision maker’s beliefs about the payoff probability of that
arm. The DM does not track all previous outcomes (pos-
sibly infinitely many) and is only allowed a coarse esti-
mate of an arm’s payoff probability as encoded by the state
space. As we will see, arms with a good payoff probabil-
ity will tend to maintain higher rankings while arms with
a poor payoff probability will tend to have lower rankings.

When m = 1, the decision maker can have only a con-
stant belief about the payoff probability of any arm and
will do exactly as well as random selection. In the subse-
quent analysis, we consider only m ≥ 2.

State Space
The size of a decision maker’s state space is uniquely de-
termined by the parameter m ∈ N, which restricts the
granularity of rankings the decision maker can have. For
the TABB problem with two arms, the size of the state
space is given by:

| Ω |= m2

When we want a decision maker to have more refined be-
liefs, we have a larger state space. Taking a larger state
space to be analogous to a more computationally expen-
sive problem, we see that our framework directly relates
computational power to the required precision in decision
making.

Starting State
In the general case, we take the decision maker’s starting
state to be the tuple

ω0 = (n, n) ∈ Ω, 1 ≤ n ≤ m
Specifically, the decision maker assigns the same ranking
to each arm in the decision problem.

However, a decision maker’s starting state can also cap-
ture information about prior beliefs. If the decision maker
believes a priori that one arm has a higher payoff probabil-
ity than another, these prior beliefs can be captured in the
rankings.

Action
The action function considers the DM’s beliefs as deter-
mined by the current state and is used to encode a decision
maker’s tendencies for exploration and exploitation. For
each ω ∈ Ω, the action function a assigns a probability
measure for selecting the next arm to play.

In the early stages, we would like the DM to explore
both arms. A nice balance of exploitation and exploration
can be achieved when a DM’s tendency to explore is in-
versely proportional to the DM’s confidence in the arms’
relative rankings. For instance, take two arms with cur-
rent ranks r1 and r2. Without loss of generality, suppose
r1 ≥ r2. Intuitively, the larger the magnitude of r1−r2, the
more confident the DM is that θ1 ≥ θ2. We loosely use the
terms strong and weak here to characterize the magnitude
of differences between ranks, where strong beliefs capture
large differences in relative arm payoff probabilities and
weak beliefs capture small differences in relative arm pay-
off probabilities. Naturally, we want the DM to play the
arm strongly believed to have a better payoff probability
at least as often as when that arm is weakly believed to
have a better payoff probablity. In general, we capture the
confidence in rankings with

| r1 − r2 |
Thus, we formalize exploitation as a weighted combina-

tion of the 2 components: the magnitude of the arm ranks
and the difference in ranks.

eω = c1

(∑2
i=1|ri−

m
2 |

2

)
+ c2

(
| r1 − r2 |

)
The DM is highly likely to explore both arms early on but
will exploit the current best arm with increasing probabil-
ity as the DM becomes more confident in the ranking as-
signed to each arm as well as in the relative ranking overall.

The notation ih is introduced to denote the arm with a
higher rank at the current state; il denotes the arm with
a lower rank. U(a, b) is used to denote sampling from
a uniform distribution with an interval from a to b. The
constants α and Ca outline rate at which exploration and
exploitation are traded off. We define the action function:

a(ω) =


ih rh = m

ih U(0, eω
α+Ca) ≥ eωα for α,Ca ≥ 1

il o.w.

When both arms have the same rank, the DM has no
preference between them and may employ some prede-
fined tie-breaking metric to select the next arm. An ex-
ample is a DM who prefers arms with a lower index value.
However, since the DM cannot distinguish these arms in
terms of expected payoff probability, we will consider
DMs that randomize selection in the event of a tie.

A special case for consideration is when an arm has the
highest ranking, m. It is advantageous to eliminate ex-
ploration in these states and play only that highest rank-
ing arm. Generally, exploration is in place to prevent the
DM from getting stuck playing a sub-optimal arm. When
we eliminate exploration for this class of states, we do not
introduce any problematic behavior. If the currently high-
est ranked arm does not have perfect payoff, the DM will
eventually transition out of the state that assigns that arm
the highest ranking and return to a state where exploration
behaves as usual. However, if the highest ranked arm has
perfect payoff, our DM is able to take full advantage and
exploit that arm in all future stages.



In the general case, the DM selects arm ih with a prob-
ability

eω
α

eωα+Ca

With the constraints α,Ca ≥ 1, we ensure that the DM
exploits arm ih with a much higher probability when ew is
high.

Transition
Once the DM has played a particular arm and received the
resulting signal, the DM must update its beliefs. To make
an update, the DM would transition into a state where the
ranks capture the updated beliefs. A judgement function j
is first used to determine how the ranks change in response
to a certain signal; an arm can either increase rank up to m
or decrease rank down to 1. At any given stage, we require
that the magnitude of a change in rank be at most 1.

Recall that s = 0 is a poor payoff and s = 1 is a good
payoff. Thus, for the TABB, we take the judgement func-
tion:

j(s) =

{
+1 s = 1

−1 s = 0

Given current beliefs about all arms and the interpreta-
tion of a new signal from j, the DM must decide whether
or not to update on this information. In general, the transi-
tion decision is reduced to either making the transition on
the new information or ignoring the new information and
preserving current beliefs. If a transition occurs, only the
rank of the arm last played can change. Since the DM has
a finite state space and can only retain a sliding window
of past signals, the DM becomes more sensitive to more
recent signals. Thus, we develop the notion of inertia to
mitigate this recency bias.

Traditionally, inertia characterizes the resistance to
change. To capture a resistance to belief updates in our
DM, we assign each undirected edge in the state space a
score that tracks the frequency of traversal along that edge.
The frequently traversed edges, with high edge scores, are
considered to have low inertia while the edges that have
hardly been traversed will have low edge scores and high
inertia. However, the persistence for a single traversal is
finite. Over time, edges that have been traversed with high
frequency in the recent stages will have high edge scores
while edges that have been traversed the same number of
times but in much earlier stages will have relatively lower
edge scores. We now formulate transition inertia contin-
gent on edge scores. Specifically, a DM is more likely
to make a transition along an edge with a high score than
along an edge with a low score. With transition inertia,
the DM becomes partially constrained within a cluster of
states that broadly capture estimates about arm rankings.
In other words, the DM’s performance is bound less to the
strict assignment of ranks to arms and, as a result, becomes
less sensitive to specific sub-sequences of signals.

We refer to the inertia of moving between states ωj
and ωk as inertiaj,k as represented by the edge score be-
tween these states. Since edges are undirected, we take
inertiaj,k to be equivalent to inertiak,j .

Let ωi,d be the state where the ri at ωi,d is equivalent to
ri + d at ω. The constants β and Ct outline rate at which
inertia impacts transition probabilities.

Formally, we define the transition function:

t(ω, i, d) =


ω (ri = 1, d = −1) or (ri = m, d = +1)

ωi,d U(0, inertiaω,ωi,dβ+Ct) ≥ inertiaω,ωi,dβ

for β,Ct ≥ 0

ω o.w.

Since we assume independence amongst arms and have
isolated the judgement of signals, there is usually exactly
one other state that the DM can transition to, ωi,d. There
are two exceptions captured by the first case in the transi-
tion function. Suppose i is played.

Exception 1: j = −1 and ri = 1

Exception 2: j = +1 and ri = m

In both situations, the DM already holds the strongest pos-
sible beliefs about arm i and will remain in the current
state.

In the general case, the DM selects arm ih with a prob-
ability

inertia
ω,ωi,d

β

inertia
ω,ωi,d

β+Ct

With the constraints β,Ct ≥ 1, we ensure that the DM
transition with a much higher probability when edge scores
are high (and inertia is low). If the DM falls into the sec-
ond case and makes a transition, the score along that edge
is incremented by CI . To enforce the finite persistence
of traversals, all edges are subject to a probabilistic decre-
ment at the end of each stage. Take the rate of refresh to
be CU and the magnitude of a decrement to be CD. Effec-
tively, edges that have been traversed recently will main-
tain a moderate score while edges traversed in the past will
only be decremented.

5.2 Algorithm

Algorithm 1 Finite Memory Automaton

1: procedure FMA((θ1, ..., θn), (Ω, ω0, a, t)) . a
decision problem and decision maker respectively

2: currentState← ω0

3: continue← True
4: while continue do
5: armToPull← a(currentState) . the arm to

pull next
6: s← pull(armToPull) . the output signal
7: d← j(s) . the transition judgement
8: currentState ←
t(currentState, armToPull, d) . the new state
after updating

9: updateInertia()
10: if end() < η then . a probability η of ending

at the current stage
11: continue← False.

6 An Example
The following section walks through an example with a
TABB problem to demonstrate how the different compo-
nents of the FMA interact.

6.1 Problem Setup
Define a TABB problem with payoff distributions 0.3 and
0.7. We can characterize this decision problem as D =
(0.3, 0.7). For this example, assume we have an infinite
horizon.



Figure 1: Ω given a two arms and m = 3; edges initialized
to 1

Take a decision maker that can distinguish between 3
ranks (m = 3). A state space diagram is given in Figure
1 for the full state space Ω. A node represents a state with
distinct rankings. A letter has been assigned to label each
state for this example. An edge between two nodes indi-
cates that a valid transition can be made between these two
states. The edge weights are displayed along the edges and
have been initialized to 1.

Let the decision maker be unbiased. We derive the start-
ing state ω0 with

ω0 = (
⌊
m+1
2

⌋
,
⌊
m+1
2

⌋
) = (2, 2),

which is state E.
For a, define the constants α = 1 and Ca = 2. For

exploitation eω , take c1 = c2 = 0.5. For t, define the
constants β = 2 and Ct = 2. For each transition, take the
edge score parameters to be CI = 1, CD = 1, CU = 0.1.
We will use the following definitions for a, j, and t.

a(ω) =


ih rh = m

ih U(0, eω
3) ≥ eω

il o.w.
j(s) =

{
+1 s = 1

−1 s = 0

t(ω, i, d) =


ω (ri = 1, d = −1) or (ri = m, d = +1)

ωi,d U(0, inertiaω,ωi,d
4) ≥ inertiaω,ωi,d2

ω o.w.

We have now specified the decision maker DM =
(Ω, E, a, t)

6.2 Stage 1
We begin by selecting an arm to play with a(E). The ex-
ploitation eE is

eω = 0.5
(∑2

i=1|ri−
m
2 |

2

)
+ 0.5

(
| r1 − r2 |

)
= 0

which falls into the third case of a. Since the ranks of arm
1 and 2 are the same, a random arm is selected. Suppose
arm 1 is selected and pulling arm 1 returns a signal −1.
We determine the direction of change d with j(−1), get-
ting d = −1. Thus, if any transition occurs, the new state
would be H = (1, 2). We have inertiaE,H = 1. Suppose
U(0, 1) = 0, falling into the third case in t. The decision
maker does not transition and remains in state E. Since no
transitions were made, there are no changes to edge scores.
All edge scores are at the minimum value 1 so no regrowth
is applicable at this stage.

Figure 2: Ω before stage 100.

Figure 3: Ω after stage 100.

6.3 Stage 100
Suppose that, after 99 stages, the current state is now C =
(2, 3). Figure 2 displays the edge scores at the start of this
stage.

We select another arm to play with a(C), where we
have exploitation eC = 1. Suppose U(0, 1) = 0 and we
fall into the fourth case in a. Instead of exploiting arm 2,
we now recompute the next arm to pull excluding arm 2.
Since arm 1 is the only remaining arm, we fall into the sec-
ond case of a and pull arm 1. Suppose we receive the signal
−1, giving d = −1. If any transition occurs, the new state
would be F = (1, 3). We have inertiaC,F = 15. Suppose
U(0, 154) = 3654, falling into the second case in t. The
decision maker does transition and is now in state F . Hav-
ing made this transition, we increase the score along this
edge by cI to inertiaC,F = 16.

After the transition, the edge scores must be recali-
brated. Each edge has in independent probability CU =
0.1 of being decremented by CD = 1. Suppose the edge
between H and F and the edge between G and I are sub-
ject to regrowth. We are now in state F with edge scores
as specified in Figure 3.

7 Experiments
The following section contains results from static TABB
problems and two classes of dynamic TABB problems. To
convey that the FMA framework performs well in multi-
ple TABB environments, each DM is run with the same
settings, varying only m. We further compare the perfor-
mance of the FMA in each environment to other algorithms
specialized for that environment.



Figure 4: Plot of the estimate of regret for D =
(0.45, 0.55) comparing the FMA with various memory ca-
pacities to other algorithms on a log scale.

To see how performance varies over horizon length, we
take η to be 0 for the infinite horizon. Cumulative payoff
is sampled at various horizons, representing the payoffs
an agent would have received if the decision problem had
ended at that stage.

7.1 Evaluation Metric
We evaluate a strategy with a measure of regret, compar-
ing the actual payoff of playing that strategy to an optimal
benchmark. In our evaluation, we take the optimal strat-
egy to be the one where the highest paying arm is played
at each stage for the full length of the horizon. At each
stage, there is also a discount factor η which corresponds
to the likelihood of arriving at this stage. Thus regret is
defined:

r =
∑h
t=1 (1− η)

h(
max(Dt)− st

)
We use this metric across both static and dynamic TABB
problems. Since the payoffs of the arms are stochastic,
each decision problem is simulated over 500 trials with the
reported values averaged across trials.

7.2 Static World
In a static TABB problem, we begin by fixing the payoff
probablities of the two arms. We then evaluate the perfor-
mance of the FMA for different values of m. Performance
of the BLA is used as a baseline, as the BLA outperforms
many of the other techniques in the general case. ε-greedy
with ε = 0.2 and ε-greedy decreasing with ε = 0.2 and
δ = 0.001 are also reported.

Experiments are run over decision problems with vary-
ing degrees of difficulty, where a difficult decision problem
requires selecting amongst arms with similar payoffs. Fig-
ure 4 and Figure 5 plot regret sampled from horizons of
length 5 to 10,000 for the decision problems (0.45, 0.55)
and (0.3, 0.7) respectively.

From these results, we can see that there is a large vari-
ance in performance in a very short horizon. This behavior
is reasonable as there is insufficient information for having
well formed beliefs about the ranking of the arms. Fur-
ther, since so few signals are received in such a short hori-
zon, there is no statistically significant improvement to be
had with more granular beliefs (i.e. higher m). However,
as the length of the horizon increases, the ability to make
more granular distinctions in beliefs about ranking make a
statistically significant improvement. We see that lower m
is required for the FMA to match the BLA’s performance
when faced with an easier decision problem.

Another nice property of the FMA is stability in results.
Evident in the decision problem (0.45, 0.55), the good av-
erage performance of algorithms such as ε-greedy masks

Figure 5: Plot of the estimate of regret for D = (0.3, 0.7)
comparing the FMA with various memory capacities to
other algorithms on a log scale.

Figure 6: Example of change in true payoff probabilities
of two arms following Brownian motion with a standard
deviation of 0.1.

the variance in regret. The FMA, like the BLA, has much
lower variance across the 500 trials. Note that there is an
upper bound on how well the FMA can perform, as values
for exploration are fixed. Even still, the FMA performs
well by quickly reaching states with an optimal ranking
and minimal exploration.

7.3 Dynamic World - Incremental Changes
One class of non-stationary TABB is presented where ban-
dit arms follow Brownian motion [5]. A modification
to the BLA incorporates dynamic Thompson sampling
which allows the beta distributions to respond to observed
changes in payoff probabilities. Effectively, the Thompson
BLA (TBLA) enforces a weak upper bound on how certain
the agent can be when estimating payoff probabilities and
consequently allows the TBLA to better estimate the pay-
off probabilities as they shift. When testing the FMA, we
consider Brownian motion with a cutoff boundary at [0, 1].
Take a standard deviation of σ and let the magnitude of
change in payoff probability be given by δ ∼ N(0, σ2).
The true payoff probability of θi at Dt is given by:

(θi)t =


(θi)t−1 + δ 0 ≤ (θi)t−1 + δ ≤ 1

0 (θi)t−1 + δ < 0

1 1 < (θi)t−1 + δ

Figure 6 shows one such sequence of changes for a deci-
sion problem with σ = 0.1 and a cutoff boundary.

The FMA, along with the BLA, dynamic Thompson
BLA, and ε-greedy are evaluated against different values
of σ for a horizon of 5000. Figure 7 shows the results
of each algorithm run on the same sequence of arms; the
maximum regret for the sequence is plotted as a worst case
baseline.

For small values of σ, we see similar results to the static
MAB problem. For larger values of σ, we see that FMA



Figure 7: Compare the estimate of regret for the FMA with
various memory capacities to other algorithms in decision
problems with different standard deviations.

Figure 8: Compare the estimate of regret for the FMA with
various memory capacities to other algorithms in decision
problems where an arm’s payoff probability stochastically
changes for bh = 500, 1000, 5000 in a horizon of 50000.

with m = 5 perform as well as FMA with m = 30. As the
true payoff probabilities of the arms are changing quickly,
the relative ranks of the arms are likely to be changing
quickly as well. Thus, the FMA is not given much time
to make use of the additional ranking power and relies on
smaller differences in ranking.

7.4 Dynamic World - Unbounded Changes
A second, less explored interpretation of non-stationary
arms is where the payoff probabilities of one or more arms
can change at any given time, bounded only to [0, 1]. For
each of the arms, we take an upper bound bh where the
payoff of an arm changes at least once every bh stages in
the horizon. We use this bound to analyze how the fre-
quency of change impacts performance. Neither ε-greedy
nor BLA strategies are equipped for this class of dynamic
MAB, but they are used as a baseline for comparison.
These algorithms are evaluated against different values of
bh for a horizon of 50000. The maximal regret for the se-
quence of arms is reported as well.

As the FMA maintains only a relative ranking of arms,
it is quick to respond to changes in arm payoff. Since the
FMA cannot recall the infinite history of signals, it is ac-
tually better at prioritizing recently received signals. In
fact, unlike in the previous two TABB environments, we
see here that higher m does not necessarily result in lower
regret; FMA with lower m, a lower ability to recall previ-
ous signals, perform much better when payoff probabilities
change with higher frequency. In contrast, traditional tech-
niques like ε-greedy and BLA which work to estimate arm
payoff probabilities with the full history of signals have no
mechanism for recognizing when there is a sudden change
of payoff. Thus, it becomes more difficult for ε-greedy
and BLA to re-calibrate estimates. We do see that when

bh = 5000, where frequency of arm change is low, the
BLA performs relatively better as it has sufficient time to
adjust its estimates. Still, the BLA is not designed for this
type of problem.

8 Discussion
From our experimental results across different TABB con-
ditions, we make the following observations about the
FMA framework.

8.1 Relative Ranking
The FMA encodes in a finite state space information about
the relative payoff probabilities for the arms. Unlike high
performing algorithms such as the BLA, which focus on
the precision of arm payoff probability estimation, the
FMA is concerned with the accuracy of the ranking of arm
payoff probability. From the static TABB problem experi-
mental results, we see that such a ranking is sufficient for
learning a strategy with low regret for horizons of at least
ten thousand stages. We find that this ranking can be built
without relying on perfect recall of past signals. When
we further consider dynamic TABB settings, we see that
a ranking is more suitable for recognizing and responding
to changes in arm payoff probability. In contrast, algo-
rithms which need to adjust probability estimates require a
longer sequence of stages to recognize shifts. This differ-
ence is most notable in the dynamic world with unbounded
changes.

8.2 Fast Learning
By sampling measures of regret along the horizon, we can
examine how well each algorithm can learn a strategy as
time goes by. Considering performance from the start of
the decision problem to horizons with 10,000 stages, we
see that an FMA with small state space (lowm) can consis-
tently identify a strategy with low regret very quickly. For
decision problems with a horizon of fewer than 50 stages,
it is more difficult to discern statistically significant dif-
ferences in performance for any TABB setting. However,
by horizons of 100, it is evident that the FMA achieves the
strategy with the lowest measured regret; the FMA remains
the algorithm which can learn the lowest regret strategy
well past a horizon of 10,000 stages. These results further
serve as a counterpoint to algorithms evaluated for conver-
gence behavior. This learning behavior is especially valu-
able in applied systems where there is not an expectation of
infinite data points and fast learning of a high performance
strategy has a real impact.

8.3 Flexible Framework
We have evaluated the FMA, under three different TABB
problems, with a single fixed setting to show that the FMA
can perform well in each environment without requiring
specialized tuning or additional mechanisms. An assump-
tion that most TABB problem algorithms make is that the
agent knows what type of behavior is expected of the ban-
dit arms, such as whether arm payoff probabilities are
static or dynamic. Further, it is assumed that the arms ex-
hibits exactly one of these behaviors. Thus, different ap-
proaches to TABB problems have typically been developed
to cater to a specific type of arm payoff probability behav-
ior and are usually evaluated in isolation. For instance,
ε-decreasing and the BLA are appropriate in static envi-
ronments while ε-greedy and the TBLA perform better in
dynamic environments. However, an agent may not neces-
sarily know this information a priori, so this assumption is



not always appropriate. An even more compelling reason
to relax this assumption is that many applications of ban-
dit arms exhibit all three types of behavior at various stages
in the decision problem; it may not be clear to the typical
agent which type of behavior an arm is currently exhibiting
so an agent should perform well in all environments.

9 Conclusions and Future Work
The paper’s contributions are as follows:

• We show that full arm payoff probability estimation
is not necessary for learning a low regret strategy
by presenting an algorithm which produces a relative
ranking of arms.

• We demonstrate that a perfect recall of the history
of signals is not required to perform well in clas-
sic TABB problems for static arms or dynamic arms
with small incremental changes.

• We identify and motivate a new class of dynamic
MAB problems to model domains where arms can
have large but infrequent changes in payoff proba-
bility.

• Based on these considerations, we design and eval-
uate the FMA framework which can match the per-
formance of existing techniques that rely on more
information.

• We weaken the assumption that a decision making
agent must know whether arms are static or dynamic
by showing that the FMA, without special tuning or
additional modifications, can match the performance
of algorithms specializing in each of the three set-
tings.

In future work, we plan to extend the analysis of the FMA
to MAB with more arms and other payoff structures. With
more arms in the decision problem, especially when con-
sidering dynamic environments, the likelihood of changes
to the optimal strategy increases with the addition of new
arms; we would expect the leverage given by the use of a
ranking system over a payoff estimation system to be am-
plified. When working with payoff structures beyond the
Bernoulli distribution, we would be able to explore more
powerful judgement functions. However, the extension of
the FMA for the broader class of multi-armed bandit prob-
lems is non-trivial and decisions must be made regarding
the behavior of components such as the action function.
More precisely, work needs to be done to determine how
the FMA should explore when the current best arm is not
exploited. This decision is not obvious and a comparison
of the existing strategies ε-greedy and the BLA already
show two distinct options; ε-greedy employs uniform ex-
ploration across all arms while the BLA explores each arm
with a likelihood corresponding to how high the expected
payoff probability is associated with that arm. Further, our
work focuses on a bounded decision maker which can per-
form well in a complex environment with static or dynamic
arms, so any extension to the FMA must be made with that
direction in mind.

An additional point of consideration is more complex
signal processing. When working with TABB, we restrict
possible signals to the set {0, 1}. However, many appli-
cations call for the ability to reason about a larger set of
signals. In these settings, the conversion of signals into
updated beliefs must be re-evaluated. This direction has
not been explored as extensively for MAB problems but

proper handling of a larger signal set would allow agents
to reason about much more complex situations.

Previous work with finite automata [8] also demonstrate
the ability to capture human decision making phenomenon
such as confirmation/first-impression biases and belief po-
larization. We suggest that an agent using coarse rela-
tive rankings produces a better model of human decision
making than an agent who uses point-probability estima-
tion. For example, it seems plausible that the average gam-
bler seems to rely more on an internalized ranking of slot
machines rewards than explicit payoff tracking and per-
fect Bayesian calculations. Investigating to what extent
the FMA produces a descriptively adequate model of hu-
man decision making is another natural direction for future
work.
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